3 research outputs found

    Magneto-inductive Passive Relaying in Arbitrarily Arranged Networks

    Full text link
    We consider a wireless sensor network that uses inductive near-field coupling for wireless powering or communication, or for both. The severely limited range of an inductively coupled source-destination pair can be improved using resonant relay devices, which are purely passive in nature. Utilization of such magneto-inductive relays has only been studied for regular network topologies, allowing simplified assumptions on the mutual antenna couplings. In this work we present an analysis of magneto-inductive passive relaying in arbitrarily arranged networks. We find that the resulting channel has characteristics similar to multipath fading: the channel power gain is governed by a non-coherent sum of phasors, resulting in increased frequency selectivity. We propose and study two strategies to increase the channel power gain of random relay networks: i) deactivation of individual relays by open-circuit switching and ii) frequency tuning. The presented results show that both methods improve the utilization of available passive relays, leading to reliable and significant performance gains.Comment: 6 pages, 9 figures. To be presented at the IEEE International Conference on Communications (ICC), Paris, France, May 201

    Robust Near-Field 3D Localization of an Unaligned Single-Coil Agent Using Unobtrusive Anchors

    Full text link
    The magnetic near-field provides a suitable means for indoor localization, due to its insensitivity to the environment and strong spatial gradients. We consider indoor localization setups consisting of flat coils, allowing for convenient integration of the agent coil into a mobile device (e.g., a smart phone or wristband) and flush mounting of the anchor coils to walls. In order to study such setups systematically, we first express the Cram\'er-Rao lower bound (CRLB) on the position error for unknown orientation and evaluate its distribution within a square room of variable size, using 15 x 10cm anchor coils and a commercial NFC antenna at the agent. Thereby, we find cm-accuracy being achievable in a room of 10 x 10 x 3 meters with 12 flat wall-mounted anchors and with 10mW used for the generation of magnetic fields. Practically achieving such estimation performance is, however, difficult because of the non-convex 5D likelihood function. To that end, we propose a fast and accurate weighted least squares (WLS) algorithm which is insensitive to initialization. This is enabled by effectively eliminating the orientation nuisance parameter in a rigorous fashion and scaling the individual anchor observations, leading to a smoothed 3D cost function. Using WLS estimates to initialize a maximum-likelihood (ML) solver yields accuracy near the theoretical limit in up to 98% of cases, thus enabling robust indoor localization with unobtrusive infrastructure, with a computational efficiency suitable for real-time processing.Comment: 7 pages, to be presented at IEEE PIMRC 201
    corecore